Publications

Publications

1. Room Temperature Upconverted Superfluorescence, K. Huang, K. K. Green, L. Huang, H. Hallen, G. Han, S. F. Lim, Nat. Photonics 16(10), 737-742, AUG 2022.

https://www.nature.com/articles/s41566-022-01060-5

2. Room temperature single nanocrystal anti-stokes shifted superfluorescence, K. Green, K. Huang, G. Han, H. Hallen, S. F. Lim, 3 OCT 2022, , Proc. SPIE 12228, Ultrafast Nonlinear Imaging and Spectroscopy X, 1222802 (2022)

https://doi.org/10.1117/12.2634447

3. Unidirectional optical mechano-sensing with upconversion nanoparticles, K. Green, B. Long, K. Huang, G. Han, H. Hallen, S. F. Lim, 1 AUG 2021, Proc. SPIE 11825, Ultrafast Nonlinear Imaging and Spectroscopy IX; 118250V (2021)

https://doi.org/10.1117/12.2597041

4. Single nanocrystal anti-stokes shifted superfluorescence,  K. Green, K. Huang, G. Han, S. F. Lim, 1 AUG 2021, Proc. SPIE 11825, Ultrafast Nonlinear Imaging and Spectroscopy IX; 118250U (2021)

https://doi.org/10.1117/12.2597043

5. Three-Dimensional Colloidal Controlled Growth of Core–Shell Heterostructured Persistent Luminescence Nanocrystals, K. Huang, Z. Li, Y. Li, N. Yu, X. Gao, L. Huang, S. F. Lim and G. Han, Nano Lett. 21(12), 4903-4910, JUN 2021.

https://doi.org/10.1021/acs.nanolett.0c04940

6.  Efficient sub-15 nm cubic-phase core/shell upconversion nanoparticles as reporters for ensemble and single particle studies, M. Tan, M.-J. Monks, D. Huang, Y. Meng, X. Chen, Y. Zhou, S. F. Lim, C. Würth, U. Resch-Genger and G. Chen, Nanoscale 12(19), 10592-10599, APR 2020.

DOI: 10.1039/D0NR02172E

7. Optical Nanoscale Thermometry: From Fundamental Mechanisms to Emerging Practical Applications, C. Bradac, S. F. Lim, H.-C. Chang, I. Aharonovich, Adv. Opt. Mater. , 2000183, MAY 2020.

DOI: 10.1002/adom.202000183

8. Large available volume particles for enhanced deep UV local Raman sensing, S. F. Lim, J. Wirth, A. F. Bravo, P. J. Schuck, H. D. Hallen, Proc. SPIE 11086, UV and Higher Energy Photonics: From Materials to Applications 2019; 110860Z (2019).

https://doi.org/10.1117/12.2529434

9. DNA methylation detection using nano bowtie antenna enhanced Raman spectroscopy’, L. Li, S. F. Lim, A. Puretsky, R. Riehn, H. Hallen, Biophys. J. 119(2018), 1-9, JUN 2018.

https://www.sciencedirect.com/science/article/pii/S0006349518304673

10. ‘Optical Temperature Sensing With Infrared Excited Upconversion Nanoparticles’, K. Green, K. Huang, H. Pan, G. Han and S. F. Lim, Front. Chem. 6(416), 1–8, SEP 2018.

https://www.frontiersin.org/articles/10.3389/fchem.2018.00416/full

11. Motor-like DNA motion due to an ATP-hydrolyzing protein under nanoconfinement’ M. Roushan, Z. Azad, S. Movahed, P. D. Ray, G. I. Livshits, S. F. Lim, K. R. Weninger, R. Riehn,Scientific Reports 8(1), 10036, JUL 2018.

https://www.nature.com/articles/s41598-018-28278-0

12. ‘Influence of gold metallodielectric partial-shell geometrical irregularities on dark plasmon resonances’, J. Wirth, H. Hallen, and S. F. Lim, J. Phys. Chem. C 121(29), 15937–15942, JUL 2017.

https://pubs.acs.org/doi/full/10.1021/acs.jpcc.7b05060

13. ‘Nanoplasmonic Upconverting Nanoparticles as Orientation Sensors for Single Particle Microscopy’, K. K. Green, J. Wirth, S. F. Lim, Scientific Reports 7(1), 762, APR 2017.

https://www.nature.com/articles/s41598-017-00869-3

14. ‘Enhancement of Upconverted Fluorescence by Interference Layers’, J. Wirth, K.K. Green, M. O’Connor, S. F. Lim, Small, 13(6), 1602846, DEC 2016.

https://onlinelibrary.wiley.com/doi/full/10.1002/smll.201602846
15. ‘Optical investigation of gold shell enhanced 25 nm diameter upconverted fluorescence emission’ K. Green, J. Wirth, S. F. Lim, Nanotechnology 27(13): 135201, FEB 2016.

(http://stacks.iop.org/0957-4484/27/i=13/a=135201)
16. ‘Multifunctional diagnostic, nanothermometer, and photothermal nano-devices’, K. Green, J. Wirth, M. O’Connor and S. F. Lim, 26 August 2015, Proc. SPIE 9584, Ultrafast Nonlinear Imaging and Spectroscopy III, 95840D.doi:10.1117/12.2188604.
17. ‘Effective photothermal treatments for cancer’, K. Green and S. F. Lim, 25 August 2015, SPIE Newsroom. DOI: 10.1117/2.1201508.006064.
18. ‘Interference of ATP with the fluorescent probes YOYO-1 and YOYO-3 modifies the mechanical properties of intercalator-stained DNA confined in nanochannels’, M. Roushan, Z. Azad, S. F. Lim, H. Wang, R. Riehn, Microchimica Acta 182(7-8), 1561-1565, JUN 2015.
19. ‘Enhancement of single particle rare earth doped NaYF4: Yb, Er emission with a gold shell’, L. Li, K. Green, H. Hallen, S. F. Lim, Nanotechnology 26(2): 025101/1-9, JAN 2015.

https://iopscience.iop.org/article/10.1088/0957-4484/26/2/025101
20. ‘Probing transient protein-mediated DNA linkages using nanoconfinement’, M. Roushan, P. Kaur, A. Karpusenko, P. J. Countryman, C. P. Ortiz, S. F. Lim, H. Wang, R. Riehn, Biomicrofluidics 8(3): 034113/1-15, JUN 2014.(Feature Article)
21. ‘Chromatin modification mapping in nanochannels’, S. F. Lim, A. Karpusenko, D.E. Streng, R. Riehn, Biomicrofluidics 7(6): 064105/1-8, NOV 2013.( top 10 most downloaded articles from the journal from Jan-March, 2014)
22. ‘Near-field enhanced ultraviolet resonance Raman spectroscopy using aluminum bow-tie nano-antenna’, L. Li, S. F. Lim, A. A. Puretzky, R. Riehn, H. D. Hallen, Applied Physics Letters 101(11): 113116/1-4, SEP 2012.
23. ‘Fluctuation modes of nanoconfined DNA’. A. Karpusenko, J. H. Carpenter, C. , S. F. Lim, J. Pan, R. Riehn, Journal of Applied Physics 111(2): 024701-024708, JAN 2012.
24. ‘DNA Methylation Profiling in Nanochannels’. S. F. Lim, A. Karpusenko, J. J. Sakon, J. A. Hook, T. A. Lamar, R. Riehn, Biomicrofluidics 5(3): 034106-034114, JUL 2011.
25. ‘Density fluctuations dispersion relationship for a polymer confined to a nanotube’. J. H. Carpenter, A. Karpusenko, J. Pan, S. F. Lim, R. Riehn, Applied Physics Letters 98(25): 253704-253706, JUN 2011.
26. ‘Epigenetic Analysis of Chromatin in Nanochannels’, D. E. Streng, S. F. Lim, R. Riehn, Biophysical Journal, 98(3):600A-600A, JAN 2010.
27. ‘Particle size dependence of the dynamic photophysical properties of NaY4:Yb, Er nanocrystals’. S. F. Lim, W. S. Ryu, R. H. Austin, Optics Express 18(3): 2309-2316, FEB 2010.
28. ‘Nanofabricated upconversion nanoparticles for photodynamic therapy’. B. Ungun, R. K. Prud’homme, S. J. Budijono, J. Shan, S. F. Lim, Y. Ju, R. H. Austin, Optics Express 17(1): 80-86 JAN 2009.
29. ‘Stretching chromatin through confinement’. D. E. Streng, S. F. Lim , J. Pan , A. Karpusenka, R. Riehn, Lab Chip 9: 2772 – 2774 AUG 2009.
30. ‘Upconverting nanophosphors for bioimaging’. S. F. Lim, R. Riehn, C-K Tung, W. S. Ryu, R. Zhuo, J. Dalland, R. H. Austin, Nanotechnology 20(40): 405701 SEP 2009.
31. ‘The Sackler Colloqium on Promise and Perils In Nanotechnology for Medicine’. R. H. Austin, S. F. Lim, PNAS 105(45): 17217-1722 NOV 2008.
32. ‘In vivo and scanning electron microscopy imaging of upconverting nanophosphors in Caenorhabditis elegans’. S. F. Lim, R. Riehn, W. S. Ryu, N. Khanarian, C. K. Tung, D. Tank, R.H. Austin, Nano Letters 6 (2): 169-174 FEB 2006. Article featured in Analytical Chemistry 78(7): 2082 APR 2006. (More than 450 citations.)(Feature article in Analytical Chemistry 78(7): 2082 APR 2006).
33. ‘Restriction mapping in nanofluidic devices’. R. Riehn, M. Lu, Y.M. Wang, S. F. Lim, E.C. Cox, R.H. Austin, PNAS 102 (29): 10012-10016 JULY 2005
34. ‘Suppression of green emission in a new class of blue-emitting polyfluorene copolymers with twisted biphenyl moieties’. S. F. Lim, F. Cacialli, R.H. Friend, I.D. Rees, J. Li, Y-G. Ma, K. Robinson, A.B. Holmes, D. Beljonne, E. Hennebicq, F. Cacialli, Advanced Functional Materials, 15 (6): 981-988 JUN 2005.
35. ‘Synthesis and luminescence properties of three novel polyfluorene copolymers’. A. Charas, J. Morgado, J. M. G. Martinho, L. Alcacer, S. F. Lim, R. H. Friend, F. Cacialli, Polymer, 44 (6): 1843-1850 MAR 2003
36. ‘Understanding dark spot formation and growth in organic light-emitting devices by controlling pinhole size and shape’. S. F. Lim, W. Wang, S. J. Chua, Advanced Functional Materials, 12 (8): 513-518 AUG 2002.
37. ‘Bubble formation and growth in organic light-emitting diodes composed of a polymeric emitter and a calcium cathode’. W. Wang, S. F. Lim, S. J. Chua, Journal of Applied Physics 91 (9): 5712-5715. MAY 2002.
38. ‘Design of luminescent polymers for LEDs’, A. B. Holmes, A. D. Bond, J. E. Davies, C. Fischmeister, J. Frey, U. Hennecke, J. Li, Y. Ma, R. E. Martin, I. D. Rees, K. Robinson, T. Sano, F. Cacialli, S. F. Lim, R. H. Friend, Mat. Res. Soc. Symp. Proc., 708: BB5.2.1-BB5.2.11 2002.
39. ‘A new family of polyfluorene copolymers for light emitting devices’, A. B. Holmes, T. Sano, C. Fischmeister, J. Frey, U. Hennecke, C. S. Tuan, B. S. Chuah, Y. G. Ma, R. E. Martin, I. D. Rees, L. Jian, N. R. Feeder, A. D. Bond, F. Cacialli, S. F. Lim, R. H. Friend, Proceedings of the Society of Photo-Optical Instrumentation Engineers (SPIE), 4464: 42-48 2002.
40. ‘Design of conjugated polymers for light emitting diodes’, A. B. Holmes, I. D. Rees, Y. Ma, R. E. Martin, C. Fischmeister, T. Sano, U. Hennecke, S. F. Lim, F. Cacialli, R. H. Friend, Abstracts of papers of the American Chemical Society 222: 270-POLY Part 2 AUG 2001.
41. ‘Morphological and electrical properties of indium tin oxide films prepared at a low processing temperature for flexible organic light-emitting devices’, F. R. Zhu, K. Zhang, B. L. Low, S. F. Lim, S. J. Chua, Materials Science and Engineering B-Solid State Materials for Advanced Technology 85 (2-3): 114-117 Sp. Iss. SI AUG 22 2001.
42. ‘Degradation of organic light-emitting devices due to formation and growth of dark spots’, S. F. Lim, W. Wang, S. J. Chua, Materials Science and Engineering B-Solid State Materials for Advanced Technology 85 (2-3): 154-159 Sp. Iss. SI AUG 22 2001.
43. ‘Influence of electrical stress voltage on cathode degradation of organic light-emitting devices’. L. Ke, S. J. Chua, S. F. Lim, Journal of Applied Physics, 90 (2): 976-979 JUL 15 2001.
44. ‘Organic light-emitting device dark spot growth behavior analysis by diffusion reaction theory’. L. Ke, S. F. Lim, S. J. Chua. Journal of Polymer Science Part B-Polymer Physics 39 (14): 1697-1703 JUL 15 2001.
45. ‘Correlation between dark spot growth and pinhole size in organic light emitting diodes’. S. F. Lim, L. Ke, W. Wang, S. J. Chua, Applied Physics Letters, 78 (15): 21162118 APR 9 2001.
46. ‘Growth of carbon nitride thin films by radio-frequency-plasma-enhanced chemical vapor deposition at low temperatures’. S. F. Lim, A. T. S. Wee, J. Lin, D. H. C. Chua, K. L. Tan, Journal of Materials Research, 14 (3): 1153-1159 MAR 1999.
47. ‘Crystalline carbon nitride deposition by r.f.-PECVD using a C2H4-NH3-H2 source gas mixture’. S. F. Lim, A. T. S. Wee, J. Lin, D. H. C. Chua, Surface and Interface Analysis, 28 (1): 212-216 AUG 1999.
48. ‘On the nature of carbon nitride nanocrystals formed by plasma enhanced chemical vapor deposition and rapid thermal annealing’. S. F. Lim, A. T. S. Wee, J. Lin, D. H. C. Chua, C. H. A. Huan, Chemical Physics Letters, 306 (1-2): 53-56 JUN 4 1999.
49. ‘Substrate influence on the formation of FeSi and FeSi2 films from cis-Fe(SiCl3)(2)(CO)(4) by LPCVD’. L. Luo, C. E. Zybill, H. G. Ang, S. F. Lim, D. H. C. Chua, J. Lin, A. T. S. Wee, K. L. Tan, Thin Solid Films, 325 (1-2): 87-91 JUL 18 1998.

Press Releases

https://headtopics.com/uk/accidental-discovery-produces-superfluorescent-light-at-room-temperature-

physics-world-31068406

https://www.umassmed.edu/news/news-archives/2022/09/gang-han-and-colleagues-develop-superfluorescence-light-emitting-nanocrystal-alternative-to-lasers/

https://www.optica-opn.org/home/newsroom/2022/september/neodymium_ions_enable_fast_warm_superfluorescence/

https://darik.news/northcarolina/gang-han-and-colleagues-develop-superfluorescence-light-emitting-nanocrystal-alternative-to-laser/705531.html

https://www.spacedaily.com/reports/Naturally_insulating_material_emits_pulses_of_superfluorescent_light_at_room_temperature_999.html

https://www.materialstoday.com/optical-materials/news/novel-nanoparticle-lights-up-the-room/

https://www.eurekalert.org/news-releases/963195

https://scienmag.com/naturally-insulating-material-emits-pulses-of-superfluorescent-light-at-room-temperature-2/

https://phys.org/news/2022-08-naturally-insulating-material-emits-pulses.html

https://www.sciencedaily.com/releases/2022/08/220829143921.htm

https://vervetimes.com/naturally-insulating-material-emits-pulses-of-superfluorescent-light-at-room-temperature-sciencedaily

https://swifttelecast.com/naturally-insulating-material-emits-pulses-of-superfluorescent-light-at-room-temperature-sciencedaily/

https://www.azonano.com/news.aspx?newsID=39602

http://spie.org/newsroom/6064-effective-photothermal-treatments-for-cancer

Book Chapters
1. ‘Nanochannels for Genomic DNA Analysis: The Long and the Short of It’.
R. Riehn, W. Reisner, J. O. Tegenfeldt, Y. M. Wang, C. –K. Tung, S. F. Lim, E. C. Cox, J. C. Sturm, K. Morton, S. Y. Chou, R. H. Austin. in Liu, R.H. and Lee, A.P. (eds.) “Integrated Biochips for DNA Analysis” , Landes Bioscience, Austin, TX and Springer Science+Business Media, New York, NY, 2007, pgs 151-186.
2. Upconverting nanoparticle based multi-functional nanoplatform for enhanced photodynamic therapy: Promises and Perils”, S.F. Lim and R. H. Austin. In M. R. Hamblin and P. Avci (eds.) “Applications of Nanoscience in Photomedicine”, Woodhead Publishing Series in Biomedicine, AUG 2014.

Invited Talks

1. Room Temperature Single Nanocrystal Anti-Stokes Shifted Superfluorescence’, PMI/PCCM Fall 2023 Seminar Series, 25 Oct 2023, Princeton Materials Institute (PMI), Princeton Center for Complex Materials (PCCM), Princeton University.

2. ‘Superfluorescence in Microrods and Microfibers’, Ultrafast Nonlinear Imaging and Spectroscopy XI, San Diego, AUG 2023.

3. ‘Room Temperature Single Nanocrystal Anti-Stokes Shifted Superfluorescence’, Upconverting Nanoparticles Gordon Research Conference, JUN 2023.

4. ‘Room Temperature Single Nanocrystal Anti-Stokes Shifted Superfluorescence’, Materials Science and Engineering, National University of Singapore, Women in MSE series colloquium, 3 Feb 2023.

5. ‘Room Temperature Single Nanocrystal Anti-Stokes Shifted Superfluorescence’, NC A&T Physics Colloquium, 18 Jan 2023.

6. ‘Room temperature single nanocrystal anti-stokes shifted superfluorescence’, Ultrafast Nonlinear Imaging and Spectroscopy X, San Diego, 21 AUG 2022.

7. ‘Single Nanocrystal Anti-Stokes shifted Superfluorescence for Ultrafast Imaging,’ Ultrafast Nolinear Imaging and Spectroscopy IX, San Diego, AUG 2021.https://youtu.be/zD2TljBmVSw

8. ‘Unidirectional Optical Mechano Sensing With Upconversion Nanoparticles’,Ultrafast Nolinear Imaging and Spectroscopy IX, San Diego, AUG 2021.

9. ‘Upconversion Nanophotonics : Photophysics, Simulations, and Applications’ at the 2nd International Conference on Materials Science and Materials Chemistry, 20 March 2019.

10. ‘Nanoplasmonic Upconverting Nanoparticles as Orientation Sensors for Single Particle Microscopy’ at The 4th International Workshop on Persistent and Photostimulable Phosphors Beijing, 6 April 2018.

11. ‘Nanophotonics: Photophysics, Simulations and Bioapplications’ at the ORaCEL seminar, NC, 25 Oct 2017.

12. ‘DNA methylation detection using nano bowtie antenna enhanced Raman spectroscopy’, at SPIE Optics and Photonics conference, San Diego, 6 August 2017.

13. ‘Nanophotonics – From Simulations, Photophysics, to Bioapplications’ at the National Technological University of Singapore, Department of Mechanical Engineering, July 17, 2017.

14. ‘Nanophotonics – From Simulations, Photophysics, to Bioapplications’ at the University of Singapore, Department of Biochemical and Biomedical Engineering, July 19, 2017.

15. ‘Nanophotonics – From Simulations, Photophysics, to Bioapplications’ at University of Cincinnati Colloquium, 10 March 2017.

16. ‘Nanoplasmonic Upconverting Nanoparticles as Orientation Sensors for Single Particle Microscopy’ at NC Photochem 2016 Symposium, NC, 2 October 2016.

17. ‘Upconversion Nanophotonics’ at SPIE Optics and Photonics conference, San Diego, 28 August 2016.

18. ‘Nanophotonics – From Simulations, Photophysics, to Biomedical Devices’ at NC A&T State University, Physics Colloquium, 29 Feb 2016.

19. ‘Local Optical Field Enhancement for measurement and control of cellular processes’ at ARO Potential Future Directions in Physics, Research Triangle Park, NC, 24-25 September, 2015.

20. ‘Multifunctional diagnostic, nanothermometer, and photothermal nanodevices’ at SPIE Optics and Photonics conference, San Diego, 9 August 2015.

21. ‘Upconversion nanophosphors as biosensors and biotherapeutic agents’ at Argonne National Labs at APS/CNM Users Meeting Nanophotonics Workshop, 12 May 2015.

22. ‘Upconversion nanophosphors as biosensors and biotherapeutic agents’ at the University of North Carolina at Wilmington Physics Colloquium, 20 March 2015.

23. ‘Upconversion nanophosphors as biosensors and biotherapeutic agents’ at IPM Institute for research in Fundamental Sciences, Iran, 14 Oct 2014.

24. Upconversion nanophosphors as biosensors and biotherapeutic agents’ at Sharif University, Iran, Physics Colloquium, 15 Oct 2014.

25. ‘Upconversion nanophosphors as biosensors and biotherapeutic agents’ at the University of Tehran, Iran, Physics Colloquium, 13 Oct 2014.

26. ‘Upconversion nanophosphors as biosensors and biotherapeutic agents’ at the CC3DMR2014 conference in Seoul, South Korea, 24 June 2014.

27. ‘Upconversion nanophosphors as biosensors and biotherapeutic agents’ at the South Dakota School of Mines & Technology Physics Colloquium, 14 March 2013.

28. ‘Upconversion nanophosphors as biosensors and biotherapeutic agents’ at the East Carolina University Physics Colloquium, 12 October 2012.

29. ‘Engineering upconverting nanophosphors as biosensors and biotherapeutic agents’ at the APS 2012 Spring Meeting.

30. ‘Upconversion nanophosphors as biosensors and biotherapeutic agents’ at the NCSU MSE Seminar series, 6 September 2011.

31. ‘Upconverting sub-10 nm sized nanophosphors in bioimaging’ at the Nanomaterials in Medicine Sackler Colloquium, Washington D.C., Feb 2007.